Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
1.
Bone ; 183: 117089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575047

RESUMO

INTRODUCTION: Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus, strategies are needed to address these concerns to improve mechanical properties and ultimately lower fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in CKD. METHODS: Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2 % adenine-laced casein-based diet (n = 48) or remained as non-CKD littermate controls (Con, n = 48). Following disease induction (26 weeks of age), n = 7 CKD and n = 7 Con were sacrificed (baseline cohort) to confirm a steady-state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice underwent right tibial loading to a maximum tensile strain of 2050 µÆ 3× a week for five weeks with the contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5× a week, and the other half remained untreated (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition including bone hydration. RESULTS: Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical, material, and compositional properties, including higher matrix-bound water. Loading was generally responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL treatment improved some trabecular outcomes and material-level mechanical properties and was responsible for improvements in several compositional parameters. While control animals responded positively to loading, their bones were less impacted by the RAL treatment, showing no deformation, toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were negatively correlated with matrix-bound water. DISCUSSION: An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity. This study highlights that RAL treatment superimposed on active bone formation may be ideal for reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.


Assuntos
Fraturas Ósseas , Insuficiência Renal Crônica , Camundongos , Humanos , Masculino , Animais , Cloridrato de Raloxifeno/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fraturas Ósseas/complicações , Água
2.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431238

RESUMO

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismo
3.
Pharm Res ; 41(3): 557-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302834

RESUMO

PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.


Assuntos
Catequina , Chá , Camundongos , Animais , Catequina/análise , Catequina/metabolismo , Catequina/farmacologia , Cloridrato de Raloxifeno/farmacologia , Solubilidade , Micelas , Antioxidantes , Extratos Vegetais/farmacologia
4.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401456

RESUMO

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Assuntos
Neoplasias da Mama , Cloridrato de Raloxifeno , Ácidos Sulfônicos , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Esteril-Sulfatase , Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor Estrogênico
5.
Bone ; 179: 116970, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977416

RESUMO

Osteogenesis imperfecta (OI) is a hereditary bone disease in which gene mutations affect collagen formation, leading to a weak, brittle bone phenotype that can cause severe skeletal deformity and increased fracture risk. OI interventions typically repurpose osteoporosis medications to increase bone mass, but this approach does not address compromised tissue-level material properties. Raloxifene (RAL) is a mild anti-resorptive used to treat osteoporosis that has also been shown to increase bone strength by a-cellularly increasing bone bound water content, but RAL cannot be administered to children due to its hormonal activity. The goal of this study was to test a RAL analog with no estrogen receptor (ER) signaling but maintained ability to reduce fracture risk. The best performing analog from a previous analog characterization project, named RAL-ADM, was tested in an in vivo study. Female wildtype (WT) and Col1a2G610C/+ (G610C) mice were randomly assigned to treated or untreated groups, for a total of 4 groups (n = 15). Starting at 10 weeks of age, all mice underwent compressive tibial loading 3×/week to induce an anabolic bone formation response in conjunction with RAL-ADM treatment (0.5 mg/kg; 5×/week) for 6 weeks. Tibiae were scanned via microcomputed tomography then tested to failure in four-point bending. RAL-ADM had reduced ER affinity, and increased post-yield properties, but did not improve bone strength in OI animals, suggesting some properties can be improved by RAL analogs but further development is needed to create an analog with decidedly positive impacts to OI bone.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Osteoporose , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Osteogênese , Osteogênese Imperfeita/genética , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Microtomografia por Raio-X
6.
J Endocrinol Invest ; 47(3): 709-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37672168

RESUMO

PURPOSE: Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS: Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS: OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION: OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.


Assuntos
Anilidas , Fator de Crescimento Insulin-Like I , Cloridrato de Raloxifeno , Feminino , Ratos , Animais , Cloridrato de Raloxifeno/farmacologia , Cálcio , Ratos Sprague-Dawley , Estrogênios/farmacologia , Fibras Musculares Esqueléticas , Hormônio Foliculoestimulante , Fósforo
7.
Clinics (Sao Paulo) ; 78: 100312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016196

RESUMO

INTRODUCTION: The CA1 region of the hippocampus has an important role in learning and memory. It has been shown that estrogen deficiency may reduce the synaptic density in the region and that hormone replacement therapy may attenuate the reduction. OBJECTIVES: This study aimed to evaluate the effects of estrogen and raloxifene on the synaptic density profile in the CA1 region of the hippocampus in ovariectomized rats. METHODS: Sixty ovariectomized three-month-old virgin rats were randomized into six groups (n = 10). Treatments started either three days (early treatment) or sixty days (late treatment) after ovariectomy. The groups received propylene glycol vehicle (0.5 mL/animal/day), equine conjugated estrogens (50 µg/animal/day), or raloxifene (3 mg/kg/day) either early or late after ovariectomy. The drugs were administered orally by gavage for 30 days. At the end of the treatments, the animals were anesthetized and transcardially perfused with ether and saline solution. The brains were removed and prepared for analysis under transmission electron microscopy and later fixed. RESULTS: Results showed a significant increase in the synaptic density profile of the hippocampal CA1 region in both the early estrogen (0.534 ± 0.026 µ/m2) and the early raloxifene (0.437 ± 0.012 µ/m2) treatment groups compared to the early or late vehicle-treated control groups (0.338 ± 0.038 µ/m2 and 0.277 ± 0.015 µ/m2 respectively). CONCLUSIONS: The present data suggest that the raloxifene effect may be lower than that of estrogen, even early or late treatment, on synaptic density in the hippocampus.


Assuntos
Região CA1 Hipocampal , Cloridrato de Raloxifeno , Animais , Feminino , Ratos , Estrogênios/farmacologia , Estrogênios Conjugados (USP)/farmacologia , Hipocampo , Ovariectomia , Cloridrato de Raloxifeno/farmacologia
8.
J Med Life ; 16(8): 1274-1281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38024816

RESUMO

Renal ischemia-reperfusion injury is caused by a temporary reduction in oxygen-carrying blood flow to the kidney, followed by reperfusion. During ischemia, kidney tissue damage induces overproduction of reactive oxygen species, which produces oxidative stress. The blood flow restoration during the reperfusion period causes further production of reactive oxygen species that ends with apoptosis and cell death. This study aimed to investigate the potential renoprotective effects of Raloxifene on bilateral renal ischemia-reperfusion injury in rats by looking into kidney function biomarkers, urea and creatinine, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Additionally, antioxidant markers such as total antioxidant capacity (TAC) and the pro-apoptotic marker caspase-3 were assessed. Histopathological scores were also employed for evaluation. Our experimental design involved 20 rats divided into four groups: the sham group underwent median laparotomy without ischemia induction, the control group experienced bilateral renal ischemia for 30 minutes followed by 2 hours of reperfusion, the vehicle group received pretreatment with a mixture of corn oil and dimethyl sulfoxide (DMSO) before ischemia induction, and the Raloxifene-treated group was administered Raloxifene at a dose of 10 mg/kg before ischemia induction, followed by ischemia-reperfusion. Urea and creatinine, TNF-α, IL-1ß, and caspase-3 in the Raloxifene group were significantly lower compared to the control and vehicle groups. On the other hand, TAC levels in the Raloxifene group were significantly higher than in the control and vehicle groups. This study concluded that Raloxifene had a renoprotective impact via multiple actions as an anti-inflammatory, anti-apoptotic, and antioxidant agent.


Assuntos
Nefropatias , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 3/uso terapêutico , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Cloridrato de Raloxifeno/metabolismo , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Creatinina , Rim , Estresse Oxidativo , Nefropatias/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Ureia/uso terapêutico , Isquemia
9.
Medicina (Kaunas) ; 59(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763640

RESUMO

The study aimed to assess the efficacy of using Raloxifene with ultrasonic processing to enhance Bio-Oss®, a bone graft substitute, for maxillary sinus bone height reconstruction. A total of 24 rabbit maxillary sinuses were distributed into three groups, each receiving different treatments: Bio-Oss® only, sonicated Bio-Oss, and sonicated Bio-Oss® with Raloxifene. Surgical procedures and subsequent histomorphometric and immunohistochemistry analyses were conducted to evaluate the bone formation, connective tissue, and remaining biomaterial, as well as the osteoblastic differentiation and maturation of collagen fibers. Results indicated that the sonicated Bio-Oss® and Bio-Oss® groups showed similar histological behavior and bone formation, but the Raloxifene group displayed inflammatory infiltrate, low bone formation, and disorganized connective tissue. The statistical analysis confirmed significant differences between the groups in terms of bone formation, connective tissue, and remaining biomaterial. In conclusion, the study found that while sonicated Bio-Oss® performed comparably to Bio-Oss® alone, the addition of Raloxifene led to an unexpected delay in bone repair. The findings stress the importance of histological evaluation for accurate bone repair assessment and the necessity for further investigation into the local application of Raloxifene. Future research may focus on optimizing bone substitutes with growth factors to improve bone repair.


Assuntos
Substitutos Ósseos , Seio Maxilar , Animais , Coelhos , Seio Maxilar/cirurgia , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Regeneração Óssea , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Minerais/uso terapêutico , Materiais Biocompatíveis
10.
Clin Transl Sci ; 16(10): 1779-1790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639334

RESUMO

Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 µM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 µM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.


Assuntos
Catequina , Chá , Adulto , Humanos , Catequina/farmacologia , Interações Medicamentosas , Glucuronídeos , Cloridrato de Raloxifeno/farmacologia , Chá/química , Estudos Cross-Over
11.
Bioorg Med Chem Lett ; 93: 129415, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532107

RESUMO

The intramolecular electrophilic cyclization of alkynes with disulfides to form thieno[2,3-b]quinoxaline structures and to introduce thioether substituents afforded quinoxaline derivatives (7a-7d, 8a-8d). Among obtained eight derivatives, the raloxifene analogues (7c, 8b) showed specifically high cytotoxicity against breast cancer cells (SK-BR-3), and raloxifene analogues (8a) showed the highest cytotoxicity against human leukemia cells (HL-60). None of the raloxifene analogues (7a-7d, 8a-8d) showed cytotoxicity against human lung fibroblasts (WI-38), which are normal cells.


Assuntos
Quinoxalinas , Cloridrato de Raloxifeno , Humanos , Ciclização , Quinoxalinas/farmacologia , Cloridrato de Raloxifeno/farmacologia , Dissulfetos
12.
Mol Biochem Parasitol ; 256: 111582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
13.
J Cell Mol Med ; 27(18): 2730-2743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480215

RESUMO

PKN1 (protein kinase N1), a serine/threonine protein kinase family member, is associated with various cancers. However, the role of PKN1 in gliomas has rarely been studied. We suggest that PKN1 expression in glioma specimens is considerably upregulated and positively correlates with the histopathological grading of gliomas. Knocking down PKN1 expression in glioblastoma (GBM) cells inhibits GBM cell proliferation, invasion and migration and promotes apoptosis. In addition, yes-associated protein (YAP) expression, an essential effector of the Hippo pathway contributing to the oncogenic role of gliomagenesis, was also downregulated. In contrast, PKN1 upregulation enhances the malignant characteristics of GBM cells and simultaneously upregulates YAP expression. Therefore, PKN1 is a promising therapeutic target for gliomas. Raloxifene (Ralo), a commonly used selective oestrogen-receptor modulator to treat osteoporosis in postmenopausal women, was predicted to target PKN1 according to the bioinformatics team from the School of Mathematics, Tianjin Nankai University. We showed that Ralo effectively targets PKN1, inhibits GBM cells proliferation and migration and sensitizes GBM cells to the major chemotherapeutic drug, Temozolomide. Ralo also reverses the effect of PKN1 on YAP activation. Thus, we confirm that PKN1 contributes to the pathogenesis of gliomas and may be a potential target for Ralo adjuvant glioma therapy.


Assuntos
Glioblastoma , Glioma , Feminino , Humanos , Cloridrato de Raloxifeno/farmacologia , Glioma/tratamento farmacológico , Glioma/genética , Apoptose , Proliferação de Células
14.
Biomed Pharmacother ; 165: 115008, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442065

RESUMO

Raloxifene belongs to the family of Selective Estrogen Receptor Modulators (SERMs), which are drugs widely prescribed for Estrogen Receptor alpha (ERα)-related pathologies. Recently, SERMs are being tested in repurposing strategies for ERα-independent clinical indications, including a wide range of microbial infections. Macrophages are central in the fight against pathogen invasion. Despite estrogens have been shown to regulate macrophage phenotype, SERMs activity in these cells is still poorly defined. We investigated the activity of Raloxifene in comparison with another widely used SERM, Tamoxifen, on immune gene expression in macrophages obtained from mouse and human tissues, including mouse peritoneal macrophages, bone marrow-derived macrophages, microglia or human blood-derived macrophages, assaying for the involvement of the ERα, PI3K and NRF2 pathways also under inflammatory conditions. Our data demonstrate that Raloxifene acts by a dual mechanism, which entails ERα antagonism and off-target mediators. Moreover, micromolar concentrations of Raloxifene increase the expression of immune metabolic genes, such as Vegfa and Hmox1, through PI3K and NRF2 activation selectively in peritoneal macrophages. Conversely, Il1b mRNA down-regulation by SERMs is consistently observed in all macrophage subtypes and unrelated to the PI3K/NRF2 system. Importantly, the production of the inflammatory cytokine TNFα induced by the bacterial endotoxin, LPS, is potentiated by SERMs and paralleled by the cell subtype-specific increase in IL1ß secretion. This work extends our knowledge on the biological and molecular mechanisms of SERMs immune activity and indicate macrophages as a pharmacological target for the exploitation of the antimicrobial potential of these drugs.


Assuntos
Cloridrato de Raloxifeno , Moduladores Seletivos de Receptor Estrogênico , Camundongos , Humanos , Animais , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação para Baixo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tamoxifeno/farmacologia , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
15.
Biochem Biophys Res Commun ; 671: 263-269, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307710

RESUMO

Atherosclerosis, a leading cause of cardiovascular disease, remains a significant global health concern. Tamoxifen and raloxifene, selective estrogen receptor modulators (SERMs), have demonstrated potential cardioprotective effects. However, the underlying molecular mechanisms by which these SERMs modulate Transforming Growth Factor-ß (TGF-ß) signaling in human vascular smooth muscle cells (VSMCs) remain largely unexplored. This study sought to investigate the impact of tamoxifen and raloxifene on TGF-ß-induced CHSY1 expression and Smad2 linker region phosphorylation in VSMCs and to elucidate the role of reactive oxygen species (ROS), NADPH oxidase (NOX), and kinase pathways in mediating these effects. Employing a comprehensive experimental strategy, VSMCs were treated with TGF-ß in the presence or absence of tamoxifen, raloxifene, and various pharmacological inhibitors. Subsequently, CHSY1 mRNA expression, Smad2C and Smad2L phosphorylation, ROS production, p47phox and ERK 1/2 phosphorylation were assessed. Our results revealed that tamoxifen and raloxifene significantly attenuated TGF-ß-mediated CHSY1 mRNA expression and Smad2 linker region phosphorylation, without affecting the canonical TGF-ß-Smad2C pathway. Furthermore, these compounds effectively inhibited ROS production, p47phox and ERK 1/2 phosphorylation, implicating the involvement of the TGF-ß-NOX-ERK-Smad2L signaling cascade in their cardioprotective properties. This study provides a comprehensive understanding of the molecular mechanisms underlying the cardioprotective effects of tamoxifen and raloxifene in VSMCs, offering valuable insights for the development of targeted therapeutic strategies aimed at atherosclerosis prevention and the promotion of cardiovascular health.


Assuntos
Aterosclerose , Fator de Crescimento Transformador beta , Humanos , Fosforilação , Fator de Crescimento Transformador beta/metabolismo , Cloridrato de Raloxifeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tamoxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Proteoglicanas/metabolismo , NADPH Oxidases/metabolismo , RNA Mensageiro/genética
16.
Int J Biol Macromol ; 242(Pt 1): 124749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37160174

RESUMO

Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 µM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 µM. Additional in-vitro studies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.


Assuntos
Neoplasias , Cloridrato de Raloxifeno , Humanos , Cloridrato de Raloxifeno/farmacologia , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Ciclofosfamida/farmacologia , Neoplasias/tratamento farmacológico , Aldeído-Desidrogenase Mitocondrial , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
17.
Bone ; 173: 116805, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196853

RESUMO

Raloxifene (RAL) reduces clinical fracture risk despite modest effects on bone mass and density. This reduction in fracture risk may be due to improved material level-mechanical properties through a non-cell mediated increase in bone hydration. Synthetic salmon calcitonin (CAL) has also demonstrated efficacy in reducing fracture risk with only modest bone mass and density improvements. This study aimed to determine if CAL could modify healthy and diseased bone through cell-independent mechanisms that alter hydration similar to RAL. 26-week-old male C57BL/6 mice induced with chronic kidney disease (CKD) beginning at 16 weeks of age via 0.2 % adenine-laced casein-based (0.9 % P, 0.6 % C) chow, and their non-CKD control littermates (Con), were utilized. Upon sacrifice, right femora were randomly assigned to the following ex vivo experimental groups: RAL (2 µM, n = 10 CKD, n = 10 Con), CAL (100 nM, n = 10 CKD, n = 10 Con), or Vehicle (VEH; n = 9 CKD, n = 9 Con). Bones were incubated in PBS + drug solution at 37 °C for 14 days using an established ex vivo soaking methodology. Cortical geometry (µCT) was used to confirm a CKD bone phenotype, including porosity and cortical thinning, at sacrifice. Femora were assessed for mechanical properties (3-point bending) and bone hydration (via solid state nuclear magnetic resonance spectroscopy with magic angle spinning (ssNMR)). Data were analyzed by two-tailed t-tests (µCT) or 2-way ANOVA for main effects of disease, treatment, and their interaction. Tukey's post hoc analyses followed a significant main effect of treatment to determine the source of the effect. Imaging confirmed a cortical phenotype reflective of CKD, including lower cortical thickness (p < 0.0001) and increased cortical porosity (p = 0.02) compared to Con. In addition, CKD resulted in weaker, less deformable bones. In CKD bones, ex vivo exposure to RAL or CAL improved total work (+120 % and +107 %, respectively; p < 0.05), post-yield work (+143 % and +133 %), total displacement (+197 % and +229 %), total strain (+225 % and +243 %), and toughness (+158 % and +119 %) vs. CKD VEH soaked bones. Ex vivo exposure to RAL or CAL did not impact any mechanical properties in Con bone. Matrix-bound water by ssNMR showed CAL treated bones had significantly higher bound water compared to VEH treated bones in both CKD and Con cohorts (p = 0.001 and p = 0.01, respectively). RAL positively modulated bound water in CKD bone compared to VEH (p = 0.002) but not in Con bone. There were no significant differences between bones soaked with CAL vs. RAL for any outcomes measured. RAL and CAL improve important post-yield properties and toughness in a non-cell mediated manner in CKD bone but not in Con bones. While RAL treated CKD bones had higher matrix-bound water content in line with previous reports, both Con and CKD bones exposed to CAL had higher matrix-bound water. Therapeutic modulation of water, specifically the bound water fraction, represents a novel approach to improving mechanical properties and potentially reducing fracture risk.


Assuntos
Conservadores da Densidade Óssea , Fraturas Ósseas , Animais , Masculino , Camundongos , Conservadores da Densidade Óssea/farmacologia , Calcitonina , Fraturas Ósseas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Cloridrato de Raloxifeno/farmacologia , Água
18.
In Vivo ; 37(3): 1156-1163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103074

RESUMO

BACKGROUND/AIM: Liver cancer is one of the malignancies with the highest mortality-to-incidence ratio worldwide. Therefore, novel therapeutic approaches are urgently needed. Combination therapy and drug repurposing can improve the response of the patients to therapy in several cancers. The aim of the present study was to merge these two strategies and evaluate whether the two-drug- or three-drug- combination of sorafenib, raloxifene, and loratadine improves the antineoplastic effect on human liver cancer cells in comparison to the single-drug effect. MATERIALS AND METHODS: The human liver cancer cell lines HepG2 and HuH7 were studied. The effect of sorafenib, raloxifene, and loratadine on the metabolic activity was determined using the MTT assay. The inhibitory concentrations (IC20 and IC50) were calculated from these results and used in the drug-combination experiments. Apoptosis and cell survival were studied by flow cytometry and using the colony formation assay, respectively. RESULTS: In both cell lines, sorafenib, raloxifene, and loratadine in two-drug and three-drug combinations significantly reduced metabolic activity and significantly increased the percentage of apoptotic cells compared to the single-drug effect. In addition, all the combinations significantly reduced the colony-forming capacity in the HepG2 cell line. Surprisingly, the effect of raloxifene on apoptosis was similar to that observed using the combinations. CONCLUSION: The triple combination sorafenib-raloxifene-loratadine may be a novel promising approach in the treatment of liver cancer patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Loratadina/farmacologia , Loratadina/uso terapêutico , Cloridrato de Raloxifeno/farmacologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Neoplasias Hepáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral
19.
Calcif Tissue Int ; 112(4): 430-439, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36707436

RESUMO

The positive link between osteoporosis and hypercholesterolemia has been documented, and bone resorption inhibitors, such as nitrogen-containing bisphosphonates (N-BP) and selective estrogen receptor modulators (SERMs), are known to reduce serum cholesterol levels. However, the relationship between the baseline cholesterol level and incident fracture rate under the treatment using the bone resorption inhibitors has not been documented. We investigated the relation between vertebral fracture incident and the baseline cholesterol levels and cholesterol-lowering effect of N-BP and SERM in osteoporosis through a prospective randomized open-label study design. Patients with osteoporosis (n = 3986) were allocated into two groups based on the drug used for treatment: minodronic acid (MIN) (n = 1624) as an N-BP and raloxifene (RLX) as an SERM (n = 1623). Serum levels of cholesterol and incidence of vertebral fracture were monitored for 2 years. The vertebral fracture rates between the two groups were compared using the pre-specified stratification factors. The patients receiving MIN with baseline low-density lipoprotein (LDL)-cholesterol level of ≥ 140 mg/dL, high-density lipoprotein cholesterol level < 40 mg/dL, age group of ≥ 75 years, and T score of BMD ≥ -3 SD had significantly lower vertebral fracture rates than those receiving RLX (incidence rate ratios (IRR) 0.45 [95% confidence interval (CI) 0.30 0.75, p = 0.001], 0.25 [95% CI 0.09 0.65, p = 0.005], 0.71 [95% CI 0.56 0.91, p = 0.006], 0.47 [95% CI 0.30 0.75, p = 0.0012], respectively). The cholesterol-lowering effect was stronger in the RLX group than in the MIN group, regardless of prior statin use. These results indicated that MIN treatment was more effective in reducing fracture risk in patients with higher LDL cholesterol levels, although its cholesterol-lowering ability was lesser than the RLX treatment.Trial registration University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR), No. UMIN000005433; date: April 13, 2011.


Assuntos
Conservadores da Densidade Óssea , Fraturas Ósseas , Osteoporose Pós-Menopausa , Osteoporose , Fraturas da Coluna Vertebral , Humanos , Idoso , Feminino , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Fraturas da Coluna Vertebral/complicações , Estudos Prospectivos , Densidade Óssea , Osteoporose/complicações , Osteoporose/tratamento farmacológico , Fraturas Ósseas/etiologia , Colesterol , Osteoporose Pós-Menopausa/tratamento farmacológico
20.
Curr Rheumatol Rev ; 19(1): 93-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35585813

RESUMO

OBJECTIVE: The current study aimed to evaluate the effect of raloxifene on the disease activity of postmenopausal patients with rheumatoid arthritis (RA) and the prevention of glucocorticoid- induced osteoporosis. METHODS: This double-blind, randomized clinical trial was conducted at the Rheumatic Diseases Research Center affiliated with Mashhad University of Medical Sciences from 2015 to 2016. Postmenopausal women with RA were randomly treated with raloxifene or placebo after discontinuation of alendronate. Disease activity was evaluated using DAS28ESR, HAQ, and VAS before and every two months after the intervention. In addition, bone mineral densitometry was performed for patients before and 14 months after the intervention. The disease activity and densitometric criteria were compared between the two groups at a significant level of p <0.05. RESULTS: A total of 17 patients were allocated to each group. The two groups were similar at baseline in underlying disease, age, duration of RA, duration of alendronate use, laboratory findings, and rheumatoid arthritis drugs. Moreover, the mean scores of DAS28ESR, HAQ, and VAS during visits were not significantly different between the intervention and control groups (p >0.05). CONCLUSION: The current study results could not prove any clinical benefits of adding raloxifene to standard therapies for patients with rheumatoid arthritis in improving their disease activity compared to placebo. CLINICAL TRIAL REGISTRATION NUMBER: Trial registration number is NCT02982083.


Assuntos
Artrite Reumatoide , Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Pós-Menopausa , Cloridrato de Raloxifeno , Feminino , Humanos , Alendronato/uso terapêutico , Alendronato/farmacologia , Artrite Reumatoide/tratamento farmacológico , Densidade Óssea , Osteoporose Pós-Menopausa/tratamento farmacológico , Cloridrato de Raloxifeno/uso terapêutico , Cloridrato de Raloxifeno/farmacologia , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...